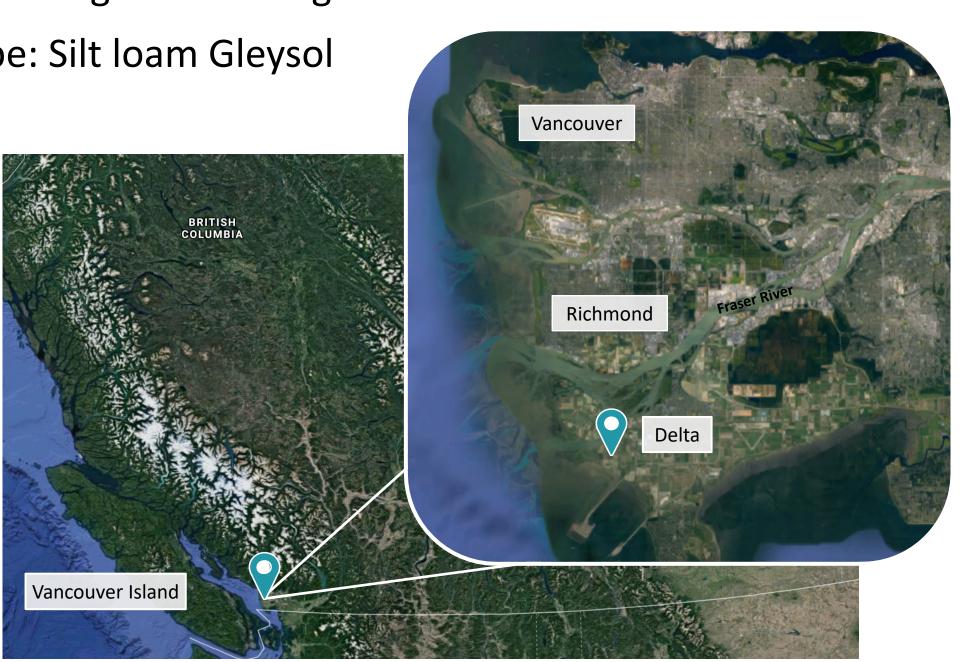
The Effects of Nitrogen Fertilizer Rates on Greenhouse Gas Emissions and Potato Production in Delta, British Columbia

INTRODUCTION

- 10% of Canada's total greenhouse gas (GHG) emissions (mainly CO₂, N_2O_1 , and CH_4) come from the agriculture sector, as of 2015.
- Intensive agricultural practices are being implemented to maintain yields amid environmental pressures.
- Excessive nitrogen fertilizer rates are a primary contributor to agricultural greenhouse gas (GHG) emissions in the form of N_2O .

- Data on GHG emissions from the most economically important crops in the British Columbia Fraser River delta are limited.
- The effects of climate change are predicted to intensify the current drainage and production issues in this region, thus reducing future production capability.

STUDY OBJECTIVES


Evaluate the responses of GHG emissions (CO₂, N₂O, and CH₄) and potato production to:

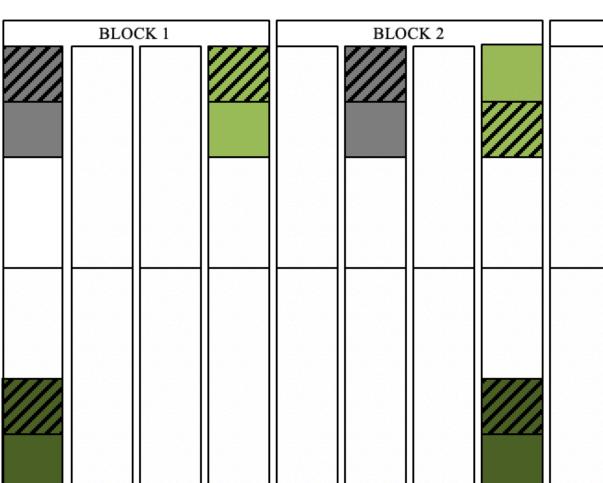
- Nitrogen fertilizer application rates of 0, 90, and 120 kg N ha⁻¹.
- The timing of planting associated with poor soil drainage through a regular planting date and a late planting date (18-day delay).

This study is a part of a 5-year project within the Agricultural Greenhouse Gas Program. The project aim is to quantify GHG emissions and develop best management practices and mitigation strategies in the Fraser Valley.

STUDY LOCATION

- The Fraser River delta in British Columbia (BC) is one of the most productive agricultural regions in Canada.
- Soil Type: Silt loam Gleysol

Fig. 1. Location of the study site in Delta, British Columbia.


THE UNIVERSITY OF BRITISH COLUMBIA Faculty of Land and Food Systems

Chantel Chizen^{1*}, Maja Krzic¹, Sean Smukler¹, and T. Andrew Black¹

¹Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada

BLOCK 3

- 3 fertilizer rates assigned randomly at the whole plot level.
- 2 planting dates assigned randomly at the split-plot level.
- Test crop: Kennebec potatoes

- The planting time had no effect on GHG emissions or yield.
- The fertilizer treatment had no significant effect on cumulative CO_2 or N_2O emissions (Fig. 4).
- There was a significantly greater CH₄ uptake in the high nitrogen fertilizer treatment compared to the other fertilizer treatments (Fig. 4).
- Potato yield in the high fertilizer treatment was significantly greater than the control, but it was not significantly different from the moderate fertilizer treatment.

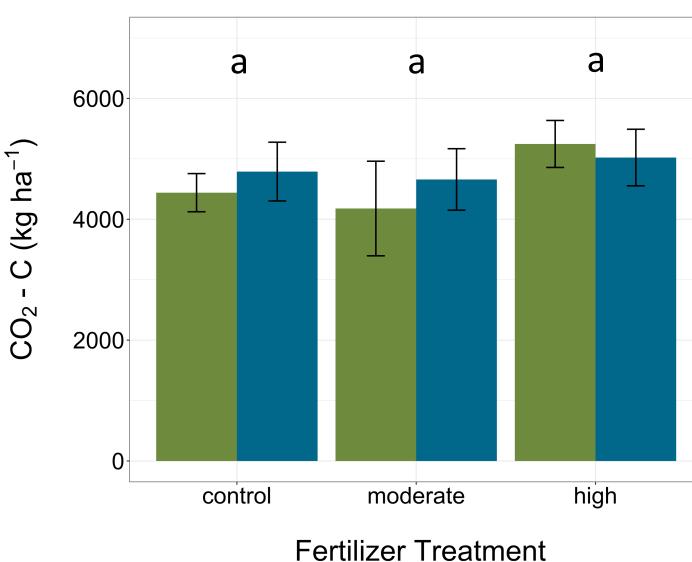
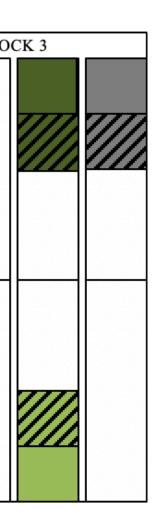



Fig. 4. Cumulative GHG emissions (CO₂, N₂O, and CH₄) at the end of the growing season, 109 days after planting. Letters indicate a statistically significant difference (p-value < 0.05) between treatments regardless of planting time as the interaction was not significant.

- was significantly greater in the high nitrogen fertilizer treatment.

STUDY DESIGN

<u>Colour –</u> Fertilizer Rate Zero-N: 0 kg ha⁻¹ Medium-N: 90 kg ha⁻¹ High-N: 120 kg ha⁻¹ Other Study

Shading – Planting Date Regular Planting / Well-Drained Late Planting / Poorly-Drained

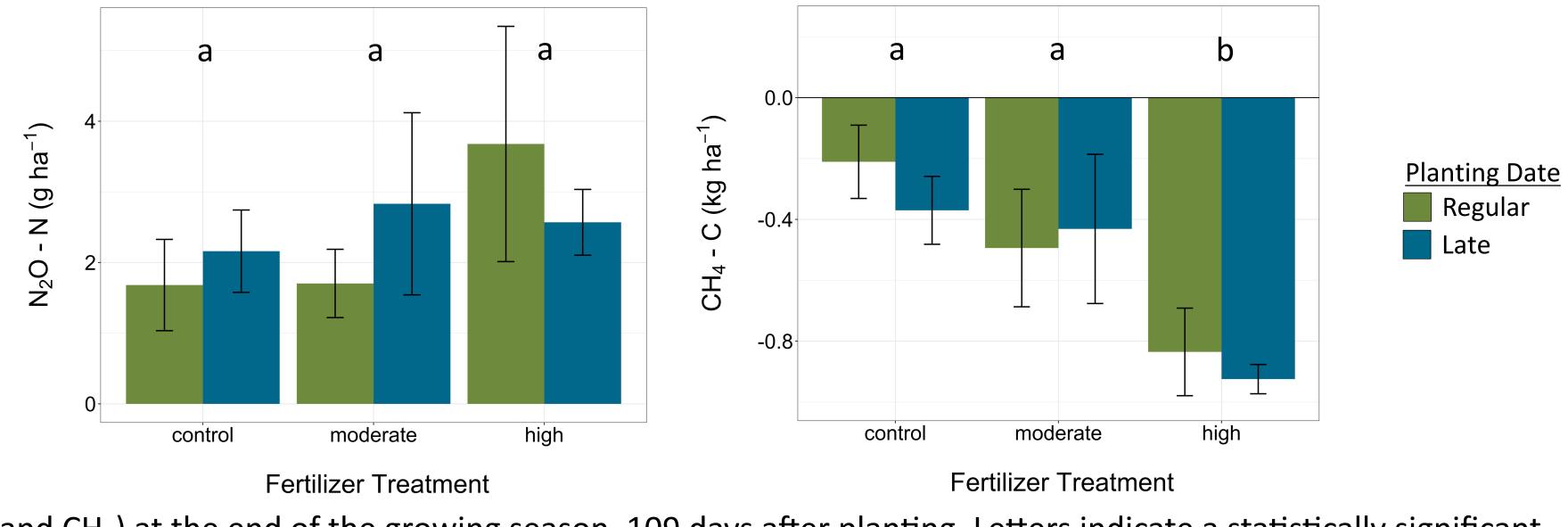


Fig. 3. Gasmet DX 4040 and static chamber.

RESULTS

Table 1. Potato yield with standard error in brackets. Letters indicate a statistically significant difference (p-value < 0.05) between treatments, regardless of planting time as the interaction was not significant.

Planting Time	Yield (kg ha ⁻¹)		
Regular	16,166	(3593)	
Late	22,813	(4155)	— a
Regular	29,494	(3086)	ab
Late	34,252	(2731)	— ab
Regular	35,882	(2265)	h
High Late	36,414	(6878)	b
	Regular Late Regular Late Regular	Regular 16,166 Late 22,813 Regular 29,494 Late 34,252 Regular 35,882	Regular 16,166 (3593) Late 22,813 (4155) Regular 29,494 (3086) Late 34,252 (2731) Regular 35,882 (2265)

SUMMARY

• At the end of the growing season, there were no significant differences in cumulative CO₂ or N₂O among the treatments, while cumulative CH₄ uptake

• The potato yield was greatest in the moderate and high fertilizer treatments. Further analysis will be conducted to evaluate potato quality. • This data will contribute to existing agricultural GHG emissions records for the Fraser Valley.

• The findings will assist in the development of BMPs to improve nitrogen fertilizer use efficiency in potato production and mitigate climate change.

SAMPLING

- Every 2 weeks: May October
- Gasmet DX 4040 and static
- chambers (Fig. 3)

Potato Yield